
Package: dubicube (via r-universe)
February 17, 2025

Title Calculation and Interpretation of Data Cube Indicator
Uncertainty

Version 0.3.0

Description This R package provides functions to explore data cubes
using robustness measures and cross-validation techniques. It
can also be used for uncertainty calculation using the
bootstrap resampling method, and functionality is provided for
efficient interpretation and visualisation of uncertainty
related to indicators based on biodiversity data cubes.

License MIT + file LICENSE

URL https://github.com/b-cubed-eu/dubicube,

https://b-cubed-eu.github.io/dubicube/,

https://doi.org/10.5281/zenodo.14850237

BugReports https://github.com/b-cubed-eu/dubicube/issues

Imports assertthat, boot, data.table, dplyr, effectclass, modelr,
purrr, rlang, tibble, tidyr

Suggests b3gbi, testthat (>= 3.0.0)

Remotes github::b-cubed-eu/b3gbi, github::inbo/effectclass

Additional_repositories https://inbo.r-universe.dev,

https://b-cubed-eu.r-universe.dev/

Config/checklist/communities b3; inbo

Config/checklist/keywords uncertainty quantification; uncertainty
visualisation; biodiversity indicators; data cubes

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/pak/sysreqs make libicu-dev libssl-dev

1

https://github.com/b-cubed-eu/dubicube
https://b-cubed-eu.github.io/dubicube/
https://doi.org/10.5281/zenodo.14850237
https://github.com/b-cubed-eu/dubicube/issues
https://inbo.r-universe.dev
https://b-cubed-eu.r-universe.dev/

2 add_effect_classification

Repository https://b-cubed-eu.r-universe.dev

RemoteUrl https://github.com/b-cubed-eu/dubicube

RemoteRef HEAD

RemoteSha f597beb2a4f1666b9ee24ed6c12397db288a6e5d

Contents
add_effect_classification . 2
bootstrap_cube . 4
calculate_bootstrap_ci . 7
cross_validate_cube . 11

Index 16

add_effect_classification

Add effect classifications to a dataframe by comparing the confidence
intervals with a reference and thresholds

Description

This function adds classified effects to a dataframe as ordered factor variables by comparing the
confidence intervals with a reference and thresholds.

Usage

add_effect_classification(
df,
cl_columns,
threshold,
reference = 0,
coarse = TRUE

)

Arguments

df A dataframe containing summary data of confidence limits. Two columns are
required containing lower and upper limits indicated by the cl_columns argu-
ment. Any other columns are optional.

cl_columns A vector of 2 column names in df indicating respectively the lower and upper
confidence limits (e.g. c("lcl", "ucl")).

threshold A vector of either 1 or 2 thresholds. A single threshold will be transformed into
reference + c(-abs(threshold), abs(threshold)).

reference The null hypothesis value to compare confidence intervals against. Defaults to
0.

coarse Logical, defaults to TRUE. If TRUE, add a coarse classification to the dataframe.

add_effect_classification 3

Details

This function is a wrapper around effectclass::classify() and effectclass::coarse_classification()
from the effectclass package (Onkelinx, 2023). They classify effects in a stable and transparent
manner.

Symbol Fine effect / trend Coarse effect / trend Rule
++ strong positive effect / strong increase positive effect / increase confidence interval above the upper threshold
+ positive effect / increase positive effect / increase confidence interval above reference and contains the upper threshold
+~ moderate positive effect / moderate increase positive effect / increase confidence interval between reference and the upper threshold
~ no effect / stable no effect / stable confidence interval between thresholds and contains reference
-~ moderate negative effect / moderate decrease negative effect / decrease confidence interval between reference and the lower threshold
- negative effect / decrease negative effect / decrease confidence interval below reference and contains the lower threshold
– strong negative effect / strong decrease negative effect / decrease confidence interval below the lower threshold
?+ potential positive effect / potential increase unknown effect / unknown confidence interval contains reference and the upper threshold
?- potential negative effect / potential decrease unknown effect / unknown confidence interval contains reference and the lower threshold
? unknown effect / unknown unknown effect / unknown confidence interval contains the lower and upper threshold

Value

The returned value is a modified version of the original input dataframe df with additional columns
effect_code and effect containing respectively the effect symbols and descriptions as ordered
factor variables. In case of coarse = TRUE (by default) also effect_code_coarse and effect_coarse
containing the coarse classification effects.

References

Onkelinx, T. (2023). effectclass: Classification and visualisation of effects [Computer software].
https://inbo.github.io/effectclass/

See Also

Other uncertainty: bootstrap_cube(), calculate_bootstrap_ci()

Examples

Example dataset
ds <- data.frame(

mean = c(0, 0.5, -0.5, 1, -1, 1.5, -1.5, 0.5, -0.5, 0),
sd = c(1, 0.5, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25, 0.5)

)
ds$lcl <- qnorm(0.05, ds$mean, ds$sd)
ds$ucl <- qnorm(0.95, ds$mean, ds$sd)

add_effect_classification(
df = ds,
cl_columns = c("lcl", "ucl"),
threshold = 1,
reference = 0,
coarse = TRUE)

https://inbo.github.io/effectclass/

4 bootstrap_cube

bootstrap_cube Perform bootstrapping over a data cube for a calculated statistic

Description

This function generate samples bootstrap replicates of a statistic applied to a data cube. It resamples
the data cube and computes a statistic fun for each bootstrap replicate, optionally comparing the
results to a reference group (ref_group).

Usage

bootstrap_cube(
data_cube,
fun,
...,
grouping_var,
samples = 1000,
ref_group = NA,
seed = NA,
progress = FALSE

)

Arguments

data_cube A data cube object (class ’processed_cube’ or ’sim_cube’, see b3gbi::process_cube())
or a dataframe (from $data slot of ’processed_cube’ or ’sim_cube’). To limit
runtime, we recommend using a dataframe with custom function as fun.

fun A function which, when applied to data_cube returns the statistic(s) of interest.
This function must return a dataframe with a column diversity_val containing
the statistic of interest.

... Additional arguments passed on to fun.

grouping_var A string specifying the grouping variable(s) for the bootstrap analysis. The out-
put of fun(data_cube) returns a row per group.

samples The number of bootstrap replicates. A single positive integer. Default is 1000.

ref_group A string indicating the reference group to compare the statistic with. Default is
NA, meaning no reference group is used.

seed A positive numeric value setting the seed for random number generation to en-
sure reproducibility. If NA (default), then set.seed() is not called at all. If not
NA, then the random number generator state is reset (to the state before calling
this function) upon exiting this function.

progress Logical. Whether to show a progress bar. Set to TRUE to display a progress bar,
FALSE (default) to suppress it.

bootstrap_cube 5

Details

Bootstrapping is a statistical technique used to estimate the distribution of a statistic by resampling
with replacement from the original data (Davison & Hinkley, 1997; Efron & Tibshirani, 1994). In
the case of data cubes, each row is sampled with replacement. Below are the common notations
used in bootstrapping:

1. Original Sample Data: X = {X1, X2, . . . , Xn}
• The initial set of observed data points. Here, n is the sample size. This corresponds to

the number of cells in a data cube or the number of rows in tabular format.

2. Statistic of Interest: θ

• The parameter or statistic being estimated, such as the mean X̄ , variance σ2, or a bio-
diversity indicator. Let θ̂ denote the estimated value of θ calculated from the complete
dataset X.

3. Bootstrap Sample: X∗ = {X∗
1 , X

∗
2 , . . . , X

∗
n}

• A sample of size n drawn with replacement from the original sample X. Each X∗
i is

drawn independently from X.
• A total of B bootstrap samples are drawn from the original data. Common choices for
B are 1000 or 10,000 to ensure a good approximation of the distribution of the bootstrap
replications (see further).

4. Bootstrap Replication: θ̂∗b
• The value of the statistic of interest calculated from the b-th bootstrap sample X∗

b . For
example, if θ is the sample mean, θ̂∗b = X̄∗

b .

5. Bootstrap Statistics:

• Bootstrap Estimate of the Statistic: θ̂boot

– The average of the bootstrap replications:

θ̂boot =
1

B

B∑
b=1

θ̂∗b

• Bootstrap Bias: Biasboot

– This bias indicates how much the bootstrap estimate deviates from the original sample
estimate. It is calculated as the difference between the average bootstrap estimate and the
original estimate:

Biasboot =
1

B

B∑
b=1

(θ̂∗b − θ̂) = θ̂boot − θ̂

• Bootstrap Standard Error: SEboot

– The standard deviation of the bootstrap replications, which estimates the variability of the
statistic.

6 bootstrap_cube

Value

A dataframe containing the bootstrap results with the following columns:

• sample: Sample ID of the bootstrap replicate

• est_original: The statistic based on the full dataset per group

• rep_boot: The statistic based on a bootstrapped dataset (bootstrap replicate)

• est_boot: The bootstrap estimate (mean of bootstrap replicates per group)

• se_boot: The standard error of the bootstrap estimate (standard deviation of the bootstrap
replicates per group)

• bias_boot: The bias of the bootstrap estimate per group

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application (1st ed.). Cam-
bridge University Press. doi:10.1017/CBO9780511802843

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap (1st ed.). Chapman and
Hall/CRC. doi:10.1201/9780429246593

See Also

Other uncertainty: add_effect_classification(), calculate_bootstrap_ci()

Examples

Get example data
install.packages("remotes")
remotes::install_github("b-cubed-eu/b3gbi")
library(b3gbi)
cube_path <- system.file(

"extdata", "denmark_mammals_cube_eqdgc.csv",
package = "b3gbi")

denmark_cube <- process_cube(
cube_path,
first_year = 2014,
last_year = 2020)

Function to calculate statistic of interest
Mean observations per year
mean_obs <- function(data) {

out_df <- aggregate(obs ~ year, data, mean) # Calculate mean obs per year
names(out_df) <- c("year", "diversity_val") # Rename columns
return(out_df)

}
mean_obs(denmark_cube$data)

Perform bootstrapping

bootstrap_mean_obs <- bootstrap_cube(
data_cube = denmark_cube$data,

https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1201/9780429246593

calculate_bootstrap_ci 7

fun = mean_obs,
grouping_var = "year",
samples = 1000,
seed = 123,
progress = FALSE)

head(bootstrap_mean_obs)

calculate_bootstrap_ci

Calculate confidence intervals for a dataframe with bootstrap repli-
cates

Description

This function calculates confidence intervals for a dataframe containing bootstrap replicates based
on different methods, including percentile (perc), bias-corrected and accelerated (bca), normal
(norm), and basic (basic).

Usage

calculate_bootstrap_ci(
bootstrap_samples_df,
grouping_var,
type = c("perc", "bca", "norm", "basic"),
conf = 0.95,
aggregate = TRUE,
data_cube = NA,
fun = NA,
...,
ref_group = NA,
jackknife = ifelse(is.element("bca", type), "usual", NA),
progress = FALSE

)

Arguments

bootstrap_samples_df

A dataframe containing the bootstrap replicates, where each row represents a
bootstrap sample. As returned by bootstrap_cube(). Apart from the grouping_var
column, the following columns should be present:

• est_original: The statistic based on the full dataset per group
• rep_boot: The statistic based on a bootstrapped dataset (bootstrap repli-

cate)

grouping_var A string specifying the grouping variable(s) used for the bootstrap analysis. This
variable is used to split the dataset into groups for separate confidence interval
calculations.

8 calculate_bootstrap_ci

type A character vector specifying the type(s) of confidence intervals to compute.
Options include:

• "perc": Percentile interval
• "bca": Bias-corrected and accelerated interval
• "norm": Normal interval
• "basic": Basic interval
• "all": Compute all available interval types (default)

conf A numeric value specifying the confidence level of the intervals. Default is 0.95
(95 % confidence level).

aggregate Logical. If TRUE (default), the function returns distinct confidence limits per
group. If FALSE, the confidence limits are added to the original bootstrap dataframe
bootstrap_samples_df.

data_cube Only used when type = "bca". A data cube object (class ’processed_cube’ or
’sim_cube’, see b3gbi::process_cube()) or a dataframe (from $data slot of
’processed_cube’ or ’sim_cube’). As used by bootstrap_cube(). To limit
runtime, we recommend using a dataframe with custom function as fun.

fun Only used when type = "bca". A function which, when applied to data_cube
returns the statistic(s) of interest. This function must return a dataframe with a
column diversity_val containing the statistic of interest. As used by bootstrap_cube().

... Additional arguments passed on to fun.

ref_group Only used when type = "bca". A string indicating the reference group to com-
pare the statistic with. Default is NA, meaning no reference group is used. As
used by bootstrap_cube().

jackknife Only used when type = "bca". A string specifying the jackknife resampling
method for BCa intervals.

• "usual": Negative jackknife (default if BCa is selected).
• "pos": Positive jackknife

progress Logical. Whether to show a progress bar for jackknifing. Set to TRUE to display
a progress bar, FALSE (default) to suppress it.

Details

We consider four different types of intervals (with confidence level α). The choice for confidence
interval types and their calculation is in line with the boot package in R (Canty & Ripley, 1999) to
ensure ease of implementation. They are based on the definitions provided by Davison & Hinkley
(1997, Chapter 5) (see also DiCiccio & Efron, 1996; Efron, 1987).

1. Percentile: Uses the percentiles of the bootstrap distribution.

CIperc =
[
θ̂∗(α/2), θ̂

∗
(1−α/2)

]
where θ̂∗(α/2) and θ̂∗(1−α/2) are the α/2 and 1 − α/2 percentiles of the bootstrap distribution,
respectively.

calculate_bootstrap_ci 9

2. Bias-Corrected and Accelerated (BCa): Adjusts for bias and acceleration
Bias refers to the systematic difference between the observed statistic from the original dataset
and the center of the bootstrap distribution of the statistic. The bias correction term is calcu-
lated as follows:

ẑ0 = Φ−1

(
#(θ̂∗b < θ̂)

B

)

where # is the counting operator and Φ−1 the inverse cumulative density function of the
standard normal distribution.
Acceleration quantifies how sensitive the variability of the statistic is to changes in the data.

• a = 0: The statistic’s variability does not depend on the data (e.g., symmetric distribution)
• a > 0: Small changes in the data have a large effect on the statistic’s variability (e.g.,

positive skew)
• a < 0: Small changes in the data have a smaller effect on the statistic’s variability (e.g.,

negative skew).

The acceleration term is calculated as follows:

â =
1

6

∑n
i=1(I

3
i)

(
∑n

i=1(I
2
i))

3/2

where Ii denotes the influence of data point xi on the estimation of θ. Ii can be estimated
using jackknifing. Examples are (1) the negative jackknife: Ii = (n − 1)(θ̂ − θ̂−i), and (2)
the positive jackknife Ii = (n + 1)(θ̂−i − θ̂) (Frangos & Schucany, 1990). Here, θ̂−i is the
estimated value leaving out the i’th data point xi. The boot package also offers infinitesimal
jackknife and regression estimation. Implementation of these jackknife algorithms can be
explored in the future.
The bias and acceleration estimates are then used to calculate adjusted percentiles.

α1 = Φ
(
ẑ0 +

ẑ0+zα/2

1−â(ẑ0+zα/2)

)
, α2 = Φ

(
ẑ0 +

ẑ0+z1−α/2

1−â(ẑ0+z1−α/2)

)
So, we get

CIbca =
[
θ̂∗(α1)

, θ̂∗(α2)

]
3. Normal: Assumes the bootstrap distribution of the statistic is approximately normal

CInorm =
[
θ̂ − Biasboot − SEboot × z1−α/2, θ̂ − Biasboot + SEboot × z1−α/2

]
where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

4. Basic: Centers the interval using percentiles

CIbasic =
[
2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)

]
where θ̂∗(α/2) and θ̂∗(1−α/2) are the α/2 and 1 − α/2 percentiles of the bootstrap distribution,
respectively.

10 calculate_bootstrap_ci

Value

A dataframe containing the bootstrap results with the following columns:

• est_original: The statistic based on the full dataset per group

• rep_boo

• est_boot: The bootstrap estimate (mean of bootstrap replicates per group)

• se_boot: The standard error of the bootstrap estimate (standard deviation of the bootstrap
replicates per group)

• bias_boot: The bias of the bootstrap estimate per group

• int_type: The interval type

• ll: The lower limit of the confidence interval

• ul: The upper limit of the confidence interval

• conf: The confidence level of the interval When aggregate = FALSE, the dataframe contains
the columns from bootstrap_samples_df with one row per bootstrap replicate.

References

Canty, A., & Ripley, B. (1999). boot: Bootstrap Functions (Originally by Angelo Canty for S)
[Computer software]. https://CRAN.R-project.org/package=boot

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application (1st ed.). Cam-
bridge University Press. doi:10.1017/CBO9780511802843

DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3).
doi:10.1214/ss/1032280214

Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Asso-
ciation, 82(397), 171–185. doi:10.1080/01621459.1987.10478410

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap (1st ed.). Chapman and
Hall/CRC. doi:10.1201/9780429246593

Frangos, C. C., & Schucany, W. R. (1990). Jackknife estimation of the bootstrap acceleration con-
stant. Computational Statistics & Data Analysis, 9(3), 271–281. doi:10.1016/01679473(90)90109U

See Also

Other uncertainty: add_effect_classification(), bootstrap_cube()

Examples

Get example data
install.packages("remotes")
remotes::install_github("b-cubed-eu/b3gbi")
library(b3gbi)
cube_path <- system.file(

"extdata", "denmark_mammals_cube_eqdgc.csv",
package = "b3gbi")

denmark_cube <- process_cube(
cube_path,
first_year = 2014,

https://CRAN.R-project.org/package=boot
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1214/ss/1032280214
https://doi.org/10.1080/01621459.1987.10478410
https://doi.org/10.1201/9780429246593
https://doi.org/10.1016/0167-9473%2890%2990109-U

cross_validate_cube 11

last_year = 2020)

Function to calculate statistic of interest
Mean observations per year
mean_obs <- function(data) {

out_df <- aggregate(obs ~ year, data, mean) # Calculate mean obs per year
names(out_df) <- c("year", "diversity_val") # Rename columns
return(out_df)

}
mean_obs(denmark_cube$data)

Perform bootstrapping

bootstrap_mean_obs <- bootstrap_cube(
data_cube = denmark_cube$data,
fun = mean_obs,
grouping_var = "year",
samples = 1000,
seed = 123,
progress = FALSE)

head(bootstrap_mean_obs)

Calculate confidence limits
Percentile interval
ci_mean_obs1 <- calculate_bootstrap_ci(

bootstrap_samples_df = bootstrap_mean_obs,
grouping_var = "year",
type = "perc",
conf = 0.95,
aggregate = TRUE)

ci_mean_obs1

All intervals
ci_mean_obs2 <- calculate_bootstrap_ci(

bootstrap_samples_df = bootstrap_mean_obs,
grouping_var = "year",
type = c("perc", "bca", "norm", "basic"),
conf = 0.95,
aggregate = TRUE,
data_cube = denmark_cube$data, # Required for BCa
fun = mean_obs, # Required for BCa
progress = FALSE)

ci_mean_obs2

cross_validate_cube Leave-one-out cross-validation for data cubes

12 cross_validate_cube

Description

This function performs leave-one-out (LOO) or k-fold (experimental) cross-validation (CV) on a
biodiversity data cube to assess the performance of a specified indicator function. It partitions the
data by a specified variable, calculates the specified indicator on training data, and compares it with
the true values to evaluate the influence of one or more categories on the final result.

Usage

cross_validate_cube(
data_cube,
fun,
...,
grouping_var,
out_var = "taxonKey",
crossv_method = c("loo", "kfold"),
k = ifelse(crossv_method == "kfold", 5, NA),
max_out_cats = 1000,
progress = FALSE

)

Arguments

data_cube A data cube object (class ’processed_cube’ or ’sim_cube’, see b3gbi::process_cube())
or a dataframe (from $data slot of ’processed_cube’ or ’sim_cube’). To limit
runtime, we recommend using a dataframe with custom function as fun.

fun A function which, when applied to data_cube returns the statistic(s) of interest.
This function must return a dataframe with a column diversity_val containing
the statistic of interest.

... Additional arguments passed on to fun.

grouping_var A string specifying the grouping variable(s) for fun. The output of fun(data_cube)
returns a row per group.

out_var A string specifying the column by which the data should be left out iteratively.
Default is "taxonKey" which can be used for leave-one-species-out CV.

crossv_method Method of data partitioning. If crossv_method = "loo" (default), S = number of unique values in out_var
training partitions are created containing S - 1 rows each. If crossv_method =
"kfold", the aggregated data is split the data into k exclusive partitions contain-
ing S / k rows each. K-fold CV is experimental and results should be interpreted
with caution.

k Number of folds (an integer). Used only if crossv_method = "kfold". Default
5.

max_out_cats An integer specifying the maximum number of unique categories in out_var to
leave out iteratively. Default is 1000. This can be increased if needed, but keep
in mind that a high number of categories in out_var may significantly increase
runtime.

progress Logical. Whether to show a progress bar. Set to TRUE to display a progress bar,
FALSE (default) to suppress it.

cross_validate_cube 13

Details

This function assesses the influence of each category in out_var on the indicator value by iteratively
leaving out one category at a time, similar to leave-one-out cross-validation. K-fold CV works in a
similar fashion but is experimental and will not be covered here.

1. Original Sample Data: X = {X11, X12, X13, . . . , Xsn}
• The initial set of observed data points, where there are s different categories in out_var

and n total samples across all categories (= the sample size). n corresponds to the number
of cells in a data cube or the number of rows in tabular format.

2. Statistic of Interest: θ
• The parameter or statistic being estimated, such as the mean X̄ , variance σ2, or a bio-

diversity indicator. Let θ̂ denote the estimated value of θ calculated from the complete
dataset X.

3. Cross-Validation (CV) Sample: X−sj

• The full dataset X excluding all samples belonging to category j. This subset is used to
investigate the influence of category j on the estimated statistic θ̂.

4. CV Estimate for Category j: θ̂−sj

• The value of the statistic of interest calculated from X−sj , which excludes category j.
For example, if θ is the sample mean, θ̂−sj = X̄−sj .

5. Error Measures:

• The Error is the difference between the statistic estimated without category j (θ̂−sj) and
the statistic calculated on the complete dataset (θ̂).

Errorsj = θ̂−sj − θ̂

• The Relative Error is the absolute error, normalised by the true estimate θ̂ and a small
error term ϵ = 10−8 to avoid division by zero.

Rel. Errorsj =
|θ̂−sj − θ̂|

θ̂ + ϵ

• The Percent Error is the relative error expressed as a percentage.

Perc. Errorsj = Rel. Errorsj × 100%

6. Summary Measures:

• The Mean Relative Error (MRE) is the average of the relative errors over all categories.

MRE =
1

s

s∑
j=1

Rel. Errorsj

• The Mean Squared Error (MSE) is the average of the squared errors.

MSE =
1

s

s∑
j=1

(Errorsj)
2

14 cross_validate_cube

• The Root Mean Squared Error (RMSE) is the square root of the MSE.

RMSE =
√

MSE

Value

A dataframe containing the cross-validation results with the following columns:

• Cross-Validation id (id_cv)

• The grouping variable grouping_var (e.g., year)

• The category left out during each cross-validation iteration (specified out_var with suffix
’_out’ in lower case)

• The computed statistic values for both training (rep_cv) and true datasets (est_original)

• Error metrics: error (error), squared error (sq_error), absolute difference (abs_error),
relative difference (rel_error), and percent difference (perc_error)

• Error metrics summarised by grouping_var: mean relative difference (mre), mean squared
error (mse) and root mean squared error (rmse)

See Details section on how these error metrics are calculated.

Examples

Get example data
install.packages("remotes")
remotes::install_github("b-cubed-eu/b3gbi")
library(b3gbi)
cube_path <- system.file(

"extdata", "denmark_mammals_cube_eqdgc.csv",
package = "b3gbi")

denmark_cube <- process_cube(
cube_path,
first_year = 2014,
last_year = 2020)

Function to calculate statistic of interest
Mean observations per year
mean_obs <- function(data) {

out_df <- aggregate(obs ~ year, data, mean) # Calculate mean obs per year
names(out_df) <- c("year", "diversity_val") # Rename columns
return(out_df)

}
mean_obs(denmark_cube$data)

Perform leave-one-species-out CV

cv_mean_obs <- cross_validate_cube(
data_cube = denmark_cube$data,
fun = mean_obs,
grouping_var = "year",
out_var = "taxonKey",

cross_validate_cube 15

crossv_method = "loo",
progress = FALSE)

head(cv_mean_obs)

Index

∗ robustness
cross_validate_cube, 11

∗ uncertainty
add_effect_classification, 2
bootstrap_cube, 4
calculate_bootstrap_ci, 7

add_effect_classification, 2, 6, 10

bootstrap_cube, 3, 4, 10

calculate_bootstrap_ci, 3, 6, 7
cross_validate_cube, 11

16

	add_effect_classification
	bootstrap_cube
	calculate_bootstrap_ci
	cross_validate_cube
	Index

