Package: gcube (via r-universe)

February 13, 2025
Title Simulating Biodiversity Data Cubes
Version 1.1.2

Description This R package provides a simulation framework for
biodiversity data cubes. This can start from simulating
multiple species distributed in a landscape over a temporal
scope. In a second phase, the simulation of a variety of
observation processes and effort can generate actual occurrence
datasets. Based on their (simulated) spatial uncertainty,
occurrences can then be designated to a grid to form a data
cube.

License MIT -+ file LICENSE

URL https://github.com/b-cubed-eu/gcube,
https://b-cubed-eu.github.io/gcube/,
https://doi.org/10.5281/zenodo. 14038996

BugReports https://github.com/b-cubed-eu/gcube/issues

Imports assertthat, dplyr, gstat, methods, mnormt, purrr, rlang, sf,
stats, terra, tidyr, vegan

Suggests ggExtra, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0),
tidyterra

Config/checklist /communities b3; inbo

Config/checklist /keywords simulation; data cubes; B-Cubed;
biodiversity; Monte-Carlo

Config/testthat/edition 3
Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Config/pak/sysreqs libgdal-dev gdal-bin libgeos-dev libicu-dev
libssl-dev libproj-dev libsqlite3-dev libudunits2-dev

Repository https://b-cubed-eu.r-universe.dev

1

https://github.com/b-cubed-eu/gcube
https://b-cubed-eu.github.io/gcube/
https://doi.org/10.5281/zenodo.14038996
https://github.com/b-cubed-eu/gcube/issues

2 add__coordinate__uncertainty

RemoteUrl https://github.com/b-cubed-eu/gcube
RemoteRef HEAD
RemoteSha e014771fb59fbeeaf3732a6d318ca7d9ec7f1303

Contents
add__coordinate_uncertaintyo oo 2
apply _manual_sampling bias oo 3
apply_polygon_sampling bias o 5
create_spatial _patterno L 6
filter _observations e 8
generate_taxonomyo 9
grid_designation e 11
map_add_ coordinate_uncertainty 13
map_ filter _observations 15
map_ grid_designation oL oL o 17
map_sample_observations 20
map_simulate _occurrences e 22
map_simulation_functions 23
sample_from_ binormal circle L 25
sample_from_ uniform_circle oL 26
sample_observations L. 27
sample occurrences_from_raster. 30
simulate_occurrences e 32
simulate_ random_walk 34
simulate_timeseries 35
Index 38

add_coordinate_uncertainty
Add coordinate uncertainty to observations

Description
This function adds a column to the input dataframe or sf object containing the coordinate
uncertainty for each observation, measured in meters.

Usage

add_coordinate_uncertainty(observations, coords_uncertainty_meters = 25)

apply _manual sampling bias 3

Arguments

observations An sf object with POINT geometry or a simple dataframe representing
the observations. This object contains the observation points to which
the coordinate uncertainty will be added.

coords_uncertainty_meters
A numeric value or a vector of numeric values representing the coordi-
nate uncertainty (in meters) associated with each observation. If a single
numeric value is provided, it will be applied to all observations. If a nu-
meric vector is provided, it must be the same length as the number of
observations.

Value

The input data frame or an sf object with POINT geometry, with an additional column
named coordinateUncertaintyInMeters that contains the coordinate uncertainty values
in meters.

See Also

Other main: filter_observations(), grid_designation(), sample_observations(),
simulate_occurrences()

Examples

Create dataframe with sampling status column
observations_data <- data.frame(
time_point = 1,
sampling_prob = seq(0.5, 1, 0.1)
)

provide a fixed uncertainty for all points

add_coordinate_uncertainty(
observations_data,
coords_uncertainty_meters = 1000

)

add variability in uncertainty. For example, using gamma distribution
uncertainty_vec <- seq(50, 100, 10)

add_coordinate_uncertainty(
observations_data,
coords_uncertainty_meters = uncertainty_vec

)

apply_manual_sampling_bias
Apply manual sampling bias to occurrences via a grid

4 apply__manual sampling bias

Description

This function adds a sampling bias weight column to an sf object containing occurrences.
The sampling probabilities are based on bias weights within each cell of a provided grid
layer.

Usage

apply_manual_sampling_bias(occurrences_sf, bias_weights)

Arguments

occurrences_sf
An sf object with POINT geometry representing the occurrences.

bias_weights An sf object with POLYGON geometry representing the grid with bias
weights. This sf object should contain a bias_weight column and a
geometry column. Higher weights indicate a higher probability of sam-
pling. Weights must be numeric values between 0 and 1 or positive inte-
gers, which will be rescaled to values between 0 and 1.

Value

An sf object with POINT geometry that includes a bias_weight column containing the
sampling probabilities based on the sampling bias.

See Also

Other detection: apply_polygon_sampling bias()

Examples

Load packages
library(sf)
library(dplyr)
library(ggplot2)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Get occurrence points
occurrences_sf <- simulate_occurrences(plgn)

Create grid with bias weights
grid <- st_make_grid(
plgn,
n = c(10, 10),
square = TRUE) %>%
st_sf()
grid$bias_weight <- runif(nrow(grid), min = 0, max = 1)

Calculate occurrence bias
occurrence_bias <- apply_manual_sampling_bias(occurrences_sf, grid)

apply__polygon_sampling bias 5

occurrence_bias

Visualise where the bias is

geplot () +
geom_sf (data = plgn) +
geom_sf(data = grid, alpha = 0) +
geom_sf (data = occurrence_bias, aes(colour = bias_weight)) +
geom_sf_text(data = grid, aes(label = round(bias_weight, 2))) +
theme_minimal ()

apply_polygon_sampling_bias
Apply sampling bias to occurrences via a polygon

Description

This function adds a sampling bias weight column to an sf object containing occurrences
based on a given polygonal area. The bias is determined by the specified bias strength,
which adjusts the probability of sampling within the polygonal area.

Usage

apply_polygon_sampling bias(occurrences_sf, bias_area, bias_strength = 1)

Arguments

occurrences_sf
An sf object with POINT geometry representing the occurrences.

bias_area An sf object with POLYGON geometry specifying the area where sam-
pling will be biased.

bias_strength A positive numeric value that represents the strength of the bias to be ap-
plied within the bias_area. Values greater than 1 will increase the sam-
pling probability within the polygon relative to outside (oversampling),
while values between 0 and 1 will decrease it (undersampling). For in-
stance, a value of 50 will make the probability 50 times higher within the
bias_area compared to outside, whereas a value of 0.5 will make it half
as likely.

Value

An sf object with POINT geometry that includes a bias_weight column containing the
sampling probabilities based on the bias area and strength.

See Also

Other detection: apply_manual_sampling_bias()

6 create_spatial pattern

Examples

Load packages
library(sf)
library(dplyr)
library(ggplot2)

Simulate some occurrence data with coordinates and time points
num_points <- 10
occurrences <- data.frame(

lon = runif (num_points, min = -180, max = 180),
lat = runif(num_points, min = -90, max = 90),
time_point = 1

)

Convert the occurrence data to an sf object
occurrences_sf <- st_as_sf(occurrences, coords = c("lon", "lat"))

Create bias_area polygon overlapping at least two of the points
selected_observations <- st_union(occurrences_sf[2:3,])
bias_area <- st_convex_hull(selected_observations) %>%
st_buffer(dist = 50) %>%
st_as_sf()

occurrence_bias_sf <- apply_polygon_sampling_bias(
occurrences_sf,
bias_area,
bias_strength = 2)

occurrence_bias_sf

Visualise where the bias is
occurrence_bias_sf %>%
mutate (bias_weight = as.factor(round(bias_weight, 3))) %>%
ggplot() +
geom_sf(data = bias_area) +
geom_sf (aes(colour = bias_weight)) +
theme_minimal ()

create_spatial_pattern
Create spatial pattern within a polygon

Description

This function creates a raster with a spatial pattern for the area of a polygon.

Usage

create_spatial_pattern(
polygon,

create_spatial pattern 7

resolution,
spatial_pattern = c("random", "clustered"),
seed = NA,
n_sim = 1

)

Arguments
polygon An sf object with POLYGON geometry.
resolution A numeric value defining the resolution of the raster cells.

spatial_pattern
Specifies the desired spatial pattern. It can be a character string ("random"
or "clustered") or a numeric value 1 (1 means random distribution,
larger values indicate more clustering). The default is "random". "clustered"
corresponds to a value of 10. See Details.

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

n_sim Number of simulations. Each simulation is a different layer in the raster.
Default is 1.

Details

The spatial_pattern argument changes the range parameter of the spherical variogram
model. spatial_pattern = 1 means the range has the same size as the grid cell, which is
defined in the resolution argument. The function gstat::vgm() is used to implement
the spherical variogram model.

Value

An object of class SpatRaster with a spatial pattern for the area of the given polygon with
n_sim layers sampling p'n_sim' containing the sampling probabilities from the raster grid
for each simulation.

See Also

gstat::vgm() and its range argument

Other occurrence: sample_occurrences_from_raster(), simulate_random_walk(), simulate_timeseries()

Examples

Load packages
library(sf)
library(ggplot2)
library(tidyterra)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

8 filter observations

1. Random spatial pattern
rs_pattern_random <- create_spatial_pattern(
polygon = plgn,
resolution = 0.1,
spatial_pattern = "random",

seed = 123)

ggplot() +
geom_spatraster(data = rs_pattern_random) +
scale_fill_continuous(type = "viridis") +

theme_minimal ()

2. Clustered spatial pattern
rs_pattern_clustered <- create_spatial_pattern(
polygon = plgn,
resolution = 0.1,
spatial_pattern = "clustered",

seed = 123)

ggplot() +
geom_spatraster(data = rs_pattern_clustered) +
scale_fill_continuous(type = "viridis") +

theme_minimal ()

3. User defined spatial pattern

Large scale clustering

rs_pattern_large <- create_spatial_pattern(
polygon = plgn,
resolution = 0.1,
spatial_pattern = 100,

seed = 123)

gegplot() +
geom_spatraster(data = rs_pattern_large) +
scale_fill_continuous(type = "viridis") +

theme_minimal ()

filter_observations Filter detected occurrences

Description
This function filters observations from all occurrences based on the sampling_status col-
umn, typically created by the sample_observations() function.

Usage

filter_observations(observations_total, invert = FALSE)

generate__taxonomy 9

Arguments

observations_total
An sf object with POINT geometry or a simple dataframe with sampling_status
column containing values "detected". This format is typically created
by the sample_observations() function.

invert Logical. If FALSE (default), the function filters to retain only "detected"
occurrences. If TRUE, it filters out "detected" occurrences and retains
all other occurrences.

Value

A data frame or an sf object with POINT geometry containing the filtered observations.
If invert = FALSE, the function returns detected occurrences. If invert = TRUE, it returns
all other occurrences.

See Also

Other main: add_coordinate_uncertainty(), grid_designation(), sample_observations(),
simulate_occurrences()

Examples

Create dataframe with sampling status column
occurrences_data <- data.frame(
time_point = 1,
sampling_prob = seq(0.5, 1, 0.1),
sampling_status = rep(c("undetected", "detected"), each = 3)
)

Keep detected occurrences
filter_observations(occurrences_data)

Keep undetected occurrences
filter_observations(occurrences_data, invert = TRUE)

generate_taxonomy Generate a tazonomic hierarchy

Description

This function generates a random taxonomic hierarchy for a specified numbers of species,
genera, families, orders, classes, phyla, and kingdoms. The output is a data frame with the
hierarchical classification for each species.

10 generate__taxonomy
Usage
generate_taxonomy (
num_species,
num_genera,
num_families,
num_orders = 1,
num_classes = 1,
num_phyla = 1,
num_kingdoms = 1,
seed = NA
)
Arguments
num_species Number of species to generate, or a dataframe. With a dataframe, the
function will create a species with taxonomic hierarchy for each row. The
original columns of the dataframe will be retained in the output.
num_genera Number of genera to generate.
num_families Number of families to generate.
num_orders Number of orders to generate. Defaults to 1.
num_classes Number of classes to generate. Defaults to 1.
num_phyla Number of phyla to generate. Defaults to 1.
num_kingdoms Number of kingdoms to generate. Defaults to 1.
seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.
Details
The function works by randomly assigning species to genera, genera to families, families to
orders, orders to classes, classes to phyla, and phyla to kingdoms. Sampling is done with
replacement, allowing multiple lower-level taxa (e.g., species) to be assigned to the same
higher-level taxon (e.g., genus).
Value
A data frame with the taxonomic classification of each species. If num_species is a
dataframe, the taxonomic classification is added to this input dataframe. The original
columns of the dataframe will be retained in the output.
See Also

Other multispecies: map_add_coordinate_uncertainty(), map_filter_observations(),
map_grid_designation(), map_sample_observations(), map_simulate_occurrences()

grid__designation

Examples

1. Create simple taxonomic hierarchy
generate_taxonomy (
num_species = 5,
num_genera = 3,
num_families =
seed = 123)

2;

2. Add taxonomic hierarchy to a dataframe
existing_df <- data.frame(
count = c(1, 2, 5, 4, 8, 9, 3),
det_prob = ¢(0.9, 0.9, 0.9, 0.8, 0.5, 0.2, 0.2)
)

generate_taxonomy (
num_species = existing_df,
num_genera = 4,
num_families = 2,
seed = 125)

11

grid_designation Observations to grid designation to create a data cube

Description

This function designates observations to cells of a given grid to create an aggregated data

cube.

Usage

grid_designation(
observations,

grid,
id_col = "row_names",
seed = NA,
aggregate = TRUE,
randomisation = c("uniform", "normal"),
p_norm = ifelse(tolower(randomisation[1]) == "uniform", NA, 0.95)
)
Arguments

observations Ansfobject with POINT geometry and a time_point and coordinateUncertaintyInMeters

column. If the former column is not present, the function will assume a
single time point. If the latter column is not present, the function will
assume no uncertainty (zero meters) around the observation points.

grid An sf object with POLYGON geometry (usually a grid) to which obser-
vations should be designated.

12 grid__designation

id_col The column name containing unique IDs for each grid cell. If "row_names"
(the default), a new column cell_code is created where the row names
represent the unique IDs.

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

aggregate Logical. If TRUE (default), returns data cube in aggregated form (grid with
the number of observations per grid cell). Otherwise, returns sampled
points within the uncertainty circle.

randomisation Character. Method used for sampling within the uncertainty circle around
each observation. "uniform" (default) means each point in the uncer-
tainty circle has an equal probability of being selected. The other option
is "normal", where a point is sampled from a bivariate Normal distri-
bution with means equal to the observation point and variance such that
p_norm % of all possible samples from this Normal distribution fall within
the uncertainty circle. See sample_from_binormal_circle().

p_norm A numeric value between 0 and 1, used only if randomisation = "normal".
The proportion of all possible samples from a bivariate Normal distribu-
tion that fall within the uncertainty circle. Default is 0.95.

Value

If aggregate = TRUE, an sf object with POLYGON geometry containing the grid cells, an
n column with the number of observations per grid cell, and a min_coord_uncertainty
column with the minimum coordinate uncertainty per grid cell. If aggregate = FALSE, an
sf object with POINT geometry containing the sampled observations within the uncertainty
circles, and a coordinateUncertaintyInMeters column with the coordinate uncertainty
for each observation.

See Also

Other main: add_coordinate_uncertainty(), filter_observations(), sample_observations(),
simulate_occurrences()

Examples

library(sf)
library(dplyr)

Create four random points

n_points <- 4

x1lim <- c(3841000, 3842000)

ylim <- c(3110000, 3112000)

coordinate_uncertainty <- rgamma(n_points, shape = 5, rate = 0.1)

observations_sf <- data.frame(
lat = runif(n_points, ylim[1], ylim[2]),
long = runif(n_points, x1lim[1], x1im[2]),

map__add__coordinate _uncertainty 13

time_point = 1,

coordinateUncertaintyInMeters = coordinate_uncertainty
) Wh

st_as_sf(coords = c("long", "lat"), crs = 3035)

Add buffer uncertainty in meters around points
observations_buffered <- observations_sf %>%
st_buffer(observations_sf$coordinateUncertaintyInMeters)

Create grid

grid_df <- st_make_grid(
observations_buffered,
square = TRUE,
cellsize = c(200, 200)

) %>h
st_sf()

Create occurrence cube
grid_designation(
observations = observations_sf,
grid = grid_df,
seed = 123

map_add_coordinate_uncertainty
Map add_coordinate_uncertainty() over multiple species

Description

This function executes add_coordinate_uncertainty() over multiple rows of a dataframe,
representing different species, with potentially different function arguments over multiple
columns.

Usage

map_add_coordinate_uncertainty(df, nested = TRUE, arg_list = NA)

Arguments
daf A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping add_coordinate_uncertaints
for each species. Columns not used by this function will be retained in
the output.
nested Logical. If TRUE (default), retains list-column containing sf objects cal-

culated by add_coordinate_uncertainty(). Otherwise, expands this
list-column into rows and columns.

14 map__add__coordinate uncertainty

arg_list A named list or NA. If NA (default), the function assumes column names in
df are identical to argument names of add_coordinate_uncertainty().
If column names differ, they must to be specified as a named list where
the names are the argument names of add_coordinate_uncertainty(),
and the associated values are the corresponding column names in df.

Value

In case of nested = TRUE, a dataframe identical to df, but each sf object with POINT geom-

etry in the list-column observations now has an additional column coordinateUncertaintyInMeters
added by add_coordinate_uncertainty(). In case of nested = FALSE, this list-column is

expanded into additional rows and columns.

See Also

Other multispecies: generate_taxonomy(), map_filter_observations(), map_grid_designation(),
map_sample_observations (), map_simulate_occurrences()

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(
taxonID = c("speciesl", "species2", "species3"),
species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 200),
n_time_points = rep(6, 3),
temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),
spatial_pattern = "random",
detection_probability = c(0.8, 0.9, 1),
invert = FALSE,
coords_uncertainty_meters = c(25, 30, 50),
seed = 123)

Simulate occurrences
sim_occl <- map_simulate_occurrences(df = species_dataset_df)

Sample observations
samp_obsl <- map_sample_observations(df = sim_occl)

Filter observations
filter_obsl <- map_filter_observations(df = samp_obs1)

Add coordinate uncertainty

map__ filter _observations

obs_uncertainty_nested <- map_add_coordinate_uncertainty(df

obs_uncertainty_nested

Example with deviating column names

Specify dataframe for 3 species with custom function arguments

species_dataset_df2 <- species_dataset_df >
rename (polygon = species_range,
sd = sd_step,
det_prob = detection_probability,
inv = invert,
coord_uncertainty = coords_uncertainty_meters)

Create named list for argument conversion
arg_conv_list <- list(

species_range = "polygon",

sd_step = "sd",

detection_probability = "det_prob",

invert = "inv",

coords_uncertainty_meters = "coord_uncertainty"

Simulate occurrences

sim_occ2 <- map_simulate_occurrences(
df = species_dataset_df2,
arg_list = arg_conv_list)

Sample observations

samp_obs2 <- map_sample_observations(
df = sim_occ2,
arg_list = arg_conv_list)

Filter observations

filter_obs2 <- map_filter_observations(
df = samp_obs2,
arg_list = arg_conv_list)

Add coordinate uncertainty
map_add_coordinate_uncertainty(
df = filter_obs2,
arg_list = arg_conv_list)

filter_obs1)

15

map_filter_observations

Map filter_observations() owver multiple species

Description

This function executes filter_observations() over multiple rows of a dataframe, rep-
resenting different species, with potentially different function arguments over multiple

columns.

16 map__ filter observations

Usage

map_filter_observations(df, nested = TRUE, arg_list = NA)

Arguments

af A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping filter_observations()
for each species. Columns not used by this function will be retained in
the output.

nested Logical. If TRUE (default), retains list-column containing sf objects/dataframes
calculated by filter_observations(). Otherwise, expands this list-
column into rows and columns.

arg_list A named list or NA. If NA (default), the function assumes column names in
df are identical to argument names of filter_observations(). If col-
umn names differ, they must be specified as a named list where the names
are the argument names of filter_observations(), and the associated
values are the corresponding column names in df.

Value

In case of nested = TRUE, a dataframe identical to df, with an extra list-column called
observations containing an sf object with POINT geometry or simple dataframe for each
row computed by filter_observations(). In case of nested = FALSE, this list-column is
expanded into additional rows and columns.

See Also

Other multispecies: generate_taxonomy (), map_add_coordinate_uncertainty(), map_grid_designation(),
map_sample_observations(), map_simulate_occurrences()

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(
taxonID = c("speciesl", "species2", "species3"),
species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 200),
n_time_points = rep(6, 3),
temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),
spatial_pattern = "random",
detection_probability = c¢(0.8, 0.9, 1),

map__ grid__designation 17

invert = FALSE,
seed = 123)

Simulate occurrences
sim_occl <- map_simulate_occurrences(df = species_dataset_df)

Sample observations
samp_obsl <- map_sample_observations(df = sim_occl)

Filter observations
filter_obs_nested <- map_filter_observations(df = samp_obsl)
filter_obs_nested

Example with deviating column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df2 <- species_dataset_df >
rename (polygon = species_range,
sd = sd_step,
det_prob = detection_probability,
inv = invert)

Create named list for argument conversion
arg_conv_list <- list(
species_range = "polygon",
sd_step = "sd",
detection_probability = "det_prob",
invert = "inv"

Simulate occurrences

sim_occ2 <- map_simulate_occurrences(
df = species_dataset_df2,
arg_list = arg_conv_list)

Sample observations

samp_obs2 <- map_sample_observations(
df = sim_occ2,
arg_list = arg_conv_list)

Filter observations
map_filter_observations(
df = samp_obs2,
arg_list = arg_conv_list)

map_grid_designation Map grid_designation() over multiple species

Description

This function executes grid_designation() over multiple rows of a dataframe, represent-
ing different species, with potentially different function arguments over multiple columns.

18 map_ grid__designation

Usage

map_grid_designation(df, nested = TRUE, arg_list = NA)

Arguments

af A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping grid_designation()
for each species. Columns not used by this function will be retained in
the output.

nested Logical. If TRUE (default), retains list-column containing sf objects calcu-
lated by grid_designation(). Otherwise, expands this list-column into
rows and columns.

arg_list A named list or NA. If NA (default), the function assumes column names in
df are identical to argument names of grid_designation(). If column
names differ, they must to be specified as a named list where the names are
the argument names of grid_designation(), and the associated values
are the corresponding column names in df.

Value

In case of nested = TRUE, a dataframe identical to df, but each sf object with POINT geom-

etry in the list-column observations now has an additional column coordinateUncertaintyInMeters
added by grid_designation(). In case of nested = FALSE, this list-column is expanded

into additional rows and columns.

See Also

Other multispecies: generate_taxonomy (), map_add_coordinate_uncertainty(), map_filter_observations()
map_sample_observations(), map_simulate_occurrences()

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Create grid
cube_grid <- st_make_grid(
st_buffer(plgn, 25),
n = c(20, 20),
square = TRUE) %>%
st_sf()

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(

taxonID = c("speciesl", "species2", "species3"),

map__ grid__designation

species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 200),
n_time_points = rep(6, 3),

temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),

spatial_pattern = "random",
detection_probability = c(0.8, 0.9, 1),

invert = FALSE,

coords_uncertainty_meters = c(25, 30, 50),
grid = rep(list(cube_grid), 3),

seed = 123)

Simulate occurrences
sim_occl <- map_simulate_occurrences(df = species_dataset_df)

Sample observations
samp_obsl <- map_sample_observations(df = sim_occl)

Filter observations
filter_obsl <- map_filter_observations(df = samp_obsl)

Add coordinate uncertainty
obs_uncertaintyl <- map_add_coordinate_uncertainty(df = filter_obs1)

Grid designation
occ_cube_nested <- map_grid_designation(df = obs_uncertaintyl)
occ_cube_nested

Example with deviating column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df2 <- species_dataset_df >/
rename (polygon = species_range,
sd = sd_step,
det_prob = detection_probability,
inv = invert,
coord_uncertainty = coords_uncertainty_meters,
raster = grid)

Create named list for argument conversion
arg_conv_list <- list(

species_range = "polygon",

sd_step = "sd",

detection_probability = "det_prob",

invert = "inv",
coords_uncertainty_meters = "coord_uncertainty",
grid = "raster"

Simulate occurrences

sim_occ2 <- map_simulate_occurrences(
df = species_dataset_df2,
arg_list = arg_conv_list)

19

20 map_ sample observations

Sample observations

samp_obs2 <- map_sample_observations(
df = sim_occ2,
arg_list = arg_conv_list)

Filter observations

filter_obs2 <- map_filter_observations(
df = samp_obs2,
arg_list = arg_conv_list)

Add coordinate uncertainty

obs_uncertainty2 <- map_add_coordinate_uncertainty(
df = filter_obs2,
arg_list = arg_conv_list)

Grid designation
map_grid_designation(
df = obs_uncertainty2,
arg_list = arg_conv_list)

map_sample_observations
Map sample_observations() over multiple species

Description

This function executes sample_observations() over multiple rows of a dataframe, rep-
resenting different species, with potentially different function arguments over multiple
columns.

Usage

map_sample_observations(df, nested = TRUE, arg_list = NA)

Arguments

af A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping sample_observations ()
for each species. Columns not used by this function will be retained in
the output.

nested Logical. If TRUE (default), retains list-column containing sf objects calcu-
lated by sample_observations(). Otherwise, expands this list-column
into rows and columns.

arg_list A named list or NA. If NA (default), the function assumes column names in

df are identical to argument names of sample_observations(). If col-
umn names differ, they must be specified as a named list where the names
are the argument names of sample_observations(), and the associated
values are the corresponding column names in df.

map__sample observations 21

Value

In case of nested = TRUE, a dataframe identical to df, with an extra list-column called
occurrences containing an sf object with POINT geometry for each row computed by
sample_observations(). In case of nested = FALSE, this list-column is expanded into
additional rows and columns.

See Also

Other multispecies: generate_taxonomy (), map_add_coordinate_uncertainty(), map_filter_observations()
map_grid_designation(), map_simulate_occurrences()

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(
taxonID = c("speciesl", "species2", "species3"),
species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 200),
n_time_points = rep(6, 3),
temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),

spatial_pattern = "random",
detection_probability = c(0.8, 0.9, 1),
seed = 123)

Simulate occurrences
sim_occl <- map_simulate_occurrences(df = species_dataset_df)

Sample observations
samp_obs_nested <- map_sample_observations(df = sim_occl)
samp_obs_nested

Example with deviating column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df2 <- species_dataset_df %>%
rename (polygon = species_range,
sd = sd_step,
det_prob = detection_probability)

Create named list for argument conversion
arg_conv_list <- list(

species_range = "polygon",

sd_step = "sd",

detection_probability = "det_prob"

22 map__simulate__occurrences

Simulate occurrences

sim_occ2 <- map_simulate_occurrences(
df = species_dataset_df2,
arg_list = arg_conv_list)

Sample observations
map_sample_observations(
df = sim_occ2,
arg_list = arg_conv_list)

map_simulate_occurrences
Map simulate_occurrences() over multiple species

Description

This function executes simulate_occurrences() over multiple rows of a dataframe, rep-
resenting different species, with potentially different function arguments over multiple
columns.

Usage

map_simulate_occurrences(df, nested = TRUE, arg_list = NA)

Arguments

df A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping simulate_occurrences()
for each species. Columns not used by this function will be retained in
the output.

nested Logical. If TRUE (default), retains list-column containing sf objects calcu-
lated by simulate_occurrences(). Otherwise, expands this list-column
into rows and columns.

arg_list A named list or NA. If NA (default), the function assumes column names in
df are identical to argument names of simulate_occurrences() and the
function specified in its temporal_function argument. If column names
differ, they must be specified as a named list where the names are the
argument names of simulate_occurrences() or the function specified
in its temporal_function argument, and the associated values are the
corresponding column names in df.

Value

In case of nested = TRUE, a dataframe identical to df, with an extra list-column called
occurrences containing an sf object with POINT geometry for each row computed by
simulate_occurrences(). In case of nested = FALSE, this list-column is expanded into
additional rows and columns.

map__simulation_functions 23

See Also

Other multispecies: generate_taxonomy(), map_add_coordinate_uncertainty(), map_filter_observations()
map_grid_designation(), map_sample_observations()

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(
taxonID = c("speciesl", "species2", "species3"),
species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 200),
n_time_points = rep(6, 3),
temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),
spatial_pattern = "random",
seed = 123)

Simulate occurrences
sim_occ_nested <- map_simulate_occurrences(df = species_dataset_df)
sim_occ_nested

Example with deviating column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df2 <- species_dataset_df ’>%
rename (polygon = species_range,
sd = sd_step)

Create named list for argument conversion
arg_conv_list <- list(
species_range = "polygon",
sd_step = "sd"
)

Simulate occurrences

map_simulate_occurrences(
df = species_dataset_df2,
arg_list = arg_conv_list)

map_simulation_functions
Map a cube simulation function over multiple rows of a dataframe

24 map__simulation__functions

Description

This function executes a cube simulation function (simulate_occurrences (), sample_observations(),
filter_observations(), add_coordinate_uncertainty(), or grid_designation()) over

multiple rows of a dataframe with potentially different function arguments over multiple

columns.

Usage

map_simulation_functions(f, df, nested = TRUE)

Arguments
f One of five cube simulation functions: simulate_occurrences(), sample_observations(),
filter_observations(), add_coordinate_uncertainty(), or grid_designation().
af A dataframe containing multiple rows, each representing a different species.
The columns are function arguments with values used for mapping f for
each species. Columns not used by this function will be retained in the
output.
nested Logical. If TRUE (default), retains list-column containing dataframes cal-
culated by f£. Otherwise, expands this list-column into rows and columns.
Value

In case of nested = TRUE, a dataframe identical to df, with an extra list-column called
mapped_col containing an sf object for each row computed by the function specified in f.
In case of nested = FALSE, this list-column is expanded into additional rows and columns.

Examples

Load packages
library(sf)
library(dplyr)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Example with simple column names
Specify dataframe for 3 species with custom function arguments
species_dataset_df <- tibble(
taxonID = c("speciesl", "species2", "species3"),
species_range = rep(list(plgn), 3),
initial_average_occurrences = c(50, 100, 500),
n_time_points = rep(6, 3),
temporal_function = c(simulate_random_walk, simulate_random_walk, NA),
sd_step = c(1, 1, NA),
spatial_pattern = "random",
seed = 123)

Simulate occurrences
sim_occ_raw <- map_simulation_functions(

sample_from__binormal circle 25

f = simulate_occurrences,
df = species_dataset_df)
sim_occ_raw

Unnest output and create sf object
sim_occ_raw_unnested <- map_simulation_functions(
f = simulate_occurrences,
df = species_dataset_df,
nested = FALSE)

sim_occ_raw_unnested %>%
st_sf()

sample_from_binormal_circle
Sample from a circle using the bivariate Normal distribution

Description

This function samples a new observations point of a species within the uncertainty circle
around each observation assuming a bivariate Normal distribution.

Usage

sample_from_binormal_circle(observations, p_norm = 0.95, seed = NA)

Arguments

observations Ansfobject with POINT geometry and a time_point and coordinateUncertaintyInMeters

column. If the former column is not present, the function will assume a
single time point. If the latter column is not present, the function will
assume no uncertainty (zero meters) around the observation points.

p_norm A numeric value between 0 and 1. The proportion of all possible sam-
ples from a bivariate Normal distribution that fall within the uncertainty
circle. Default is 0.95. See Details.

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Detalils

A new observation point is sampled from a bivariate Normal distribution with means equal
to the X and Y coordinates of its original observation point and variances equal to (-
coordinateUncertaintyInMeters™2) / (2 * log(1 - p_norm)), ensuring p_norm % of all
possible samples fall within the uncertainty circle.

26 sample_from__uniform_ circle

Value

An sf object with POINT geometry containing the locations of the sampled occurrences
and a coordinateUncertaintyInMeters column containing the coordinate uncertainty for
each observation.

See Also

Other designation: sample_from_uniform_circle()

Examples

library(sf)
library(dplyr)

Create four random points

n_points <- 4

x1lim <- c(3841000, 3842000)

ylim <- c(3110000, 3112000)

coordinate_uncertainty <- rgamma(n_points, shape = 5, rate = 0.1)

observations_sf <- data.frame(

lat = runif(n_points, ylim[1], ylim[2]),

long = runif(n_points, x1lim[1], x1im[2]),

time_point = 1,

coordinateUncertaintyInMeters = coordinate_uncertainty
) W%

st_as_sf(coords = c("long", "lat"), crs = 3035)

Sample points within uncertainty circles according to normal rules
sample_from_binormal_circle(

observations = observations_sf,

p_norm = 0.95,

seed = 123

sample_from_uniform_circle
Sample from a circle using the Uniform distribution

Description
This function samples a new observations point of a species within the uncertainty circle
around each observation assuming a Uniform distribution.

Usage

sample_from_uniform_circle(observations, seed = NA)

sample__observations 27

Arguments

observations Ansfobject with POINT geometry and a time_point and coordinateUncertaintyInMeters
column. If the former column is not present, the function will assume a
single time point. If the latter column is not present, the function will
assume no uncertainty (zero meters) around the observation points.

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Value

An sf object with POINT geometry containing the locations of the sampled occurrences
and a coordinateUncertaintyInMeters column containing the coordinate uncertainty for
each observation.

See Also

Other designation: sample_from_binormal_circle()

Examples

library(sf)

Create four random points

n_points <- 4

xlim <- c(3841000, 3842000)

ylim <- c(3110000, 3112000)

coordinate_uncertainty <- rgamma(n_points, shape = 5, rate = 0.1)

observations_sf <- data.frame(

lat = runif(n_points, ylim[1], ylim[2]),

long = runif(n_points, x1lim[1], x1im[2]),

time_point = 1,

coordinateUncertaintyInMeters = coordinate_uncertainty
) %>

st_as_sf(coords = c("long", "lat"), crs = 3035)

Sample points within uncertainty circles according to uniform rules
sample_from_uniform_circle(

observations = observations_sf,

seed = 123

sample_observations Sample observations from a larger occurrence dataset

28

Description

sample__observations

The function computes observations from occurrences based on detection probability and
sampling bias by implementing a Bernoulli trial.

Usage

sample_observations(

occurrences,

detection_probability = 1,
sampling_bias = c("no_bias", "polygon", "manual"),

bias_area =

NA,

bias_strength = 1,

bias_weights

seed = NA

Arguments

occurrences

= NA,

An sf object with POINT geometry representing the occurrences.

detection_probability

sampling_bias

bias_area

bias_strength

bias_weights

A numeric value between 0 and 1 representing the probability of detecting
the species.

A character string specifying the method to generate a sampling bias.
Options are "no_bias", "polygon", or "manual".

"no_bias" No bias is applied (default).

"polygon" Bias the sampling within a polygon. Provide the polygon to
bias_area and the bias strength to bias_strength.

"manual" Bias the sampling manually using a grid. Provide the grid
layer in which each cell contains the probability of being sampled to
bias_weights.

An sf object with POLYGON geometry, or NA. Only used if sampling_bias
= "polygon". This defines the area in which the sampling will be biased.

A positive numeric value, or NA. Only used if sampling_bias = "polygon".
The value represents the strength of the bias to be applied within the
bias_area. Values greater than 1 will increase the sampling probability
within the polygon relative to outside (oversampling), while values be-
tween 0 and 1 will decrease it (undersampling). For instance, a value
of 50 will make the probability 50 times higher within the bias_area
compared to outside, whereas a value of 0.5 will make it half as likely.

A grid layer (an sf object with POLYGON geometry), or NA. Only used if
sampling_bias = "manual". The grid of bias weights to be applied. This
sf object should contain a bias_weight column with the weights per grid
cell. Higher weights increase the probability of sampling. Weights can be
numeric values between 0 and 1 or positive integers, which will be rescaled
to values between 0 and 1.

sample__observations 29

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Value

An sf object with POINT geometry containing the locations of the occurrence with detection
status. The object includes the following columns:

detection_probability The detection probability for each occurrence (will be the same
for all).

bias_weight The sampling probability based on sampling bias for each occurrence.

sampling_probability The combined sampling probability from detection probability and
sampling bias for each occurrence.

sampling_status Indicates whether the occurrence was detected ("detected") or not
("undetected"). Detected occurrences are called observations.

See Also

Other main: add_coordinate_uncertainty(), filter_observations(), grid_designation(),
simulate_occurrences()

Examples

Load packages
library(sf)
library(dplyr)

Simulate some occurrence data with coordinates and time points
num_points <- 10
occurrences <- data.frame(

lon = runif (num_points, min = -180, max = 180),

lat = runif (num_points, min = -90, max = 90),

time_point = 0

)

Convert the occurrence data to an sf object
occurrences_sf <- st_as_sf(occurrences, coords = c("lon", "lat"))

1. Sample observations without sampling bias
sample_observations(

occurrences_sf,

detection_probability = 0.8,

sampling_bias = "no_bias",
seed = 123
)

2. Sample observations with sampling bias in a polygon
Create bias_area polygon overlapping two of the points
selected_observations <- st_union(occurrences_sf[2:3,])

30 sample__occurrences_from__raster

bias_area <- st_convex_hull(selected_observations) %>%
st_buffer(dist = 50) %>%
st_as_sf()

sample_observations(
occurrences_sf,
detection_probability = 0.8,
sampling_bias = "polygon",
bias_area = bias_area,
bias_strength = 2,
seed = 123
)

3. Sample observations with sampling bias given manually in a grid
Create raster grid with bias weights between 0 and 1
grid <- st_make_grid(occurrences_sf) %>/

st_st () W>%

mutate(bias_weight = runif(n(), min = 0, max = 1))

sample_observations(
occurrences_sf,
detection_probability = 0.8,

sampling_bias = "manual",
bias_weights = grid,

seed = 123

)

sample_occurrences_from_raster
Sample occurrences from spatial random field

Description

This function draws point occurrences from a spatial random field represented by a raster.
Points are sampled based on the values in the raster, with the number of occurrences
specified for each time step.

Usage

sample_occurrences_from_raster(raster, time_series, seed = NA)

Arguments
raster A SpatRaster object (see terra::rast()).
time_series A vector with the number of occurrences per time point.
seed A positive numeric value setting the seed for random number generation

to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

sample__occurrences_from__ raster 31

Value

An sf object with POINT geometry containing the locations of the simulated occurrences,
a time_point column indicating the associated time point for each occurrence and columns
used as weights for sampling. If the raster is created with create_spatial_pattern(),
the column sampling_p1 is used.

See Also

Other occurrence: create_spatial_pattern(), simulate_random_walk(), simulate_timeseries()

Examples

Load packages
library(sf)
library(ggplot2)
library(tidyterra)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

Medium scale clustering
Create the random field
rs_pattern_clustered <- create_spatial_pattern(
polygon = plgn,
resolution = 0.1,
spatial_pattern = "clustered",
seed = 123)

Sample 200 occurrences from random field
pts_occ_clustered <- sample_occurrences_from_raster(
raster = rs_pattern_clustered,
time_series = 200,
seed = 123)

geplot() +
geom_spatraster(data = rs_pattern_clustered) +
geom_sf (data = pts_occ_clustered) +
scale_fill_continuous(type = "viridis") +
theme_minimal ()

Large scale clustering
Create the random field
rs_pattern_large <- create_spatial_pattern(
polygon = plgn,
resolution = 0.1,
spatial_pattern = 100,
seed = 123)

Sample 200 occurrences from random field
pts_occ_large <- sample_occurrences_from_raster(
raster = rs_pattern_large,
time_series = 200,

32 simulate _occurrences

seed = 123)

ggplot() +
geom_spatraster(data = rs_pattern_large) +
geom_sf (data = pts_occ_large) +
scale_fill_continuous(type = "viridis") +
theme_minimal ()

simulate_occurrences Simulate species occurrences within a spatiotemporal scope

Description

This function simulates occurrences of a species within a specified spatial and/or temporal
extent.

Usage

simulate_occurrences(
species_range,
initial_average_occurrences = 50,
spatial_pattern = c("random", "clustered"),
n_time_points = 1,
temporal_function = NA,

L)

seed = NA

Arguments

species_range An sf object with POLYGON geometry indicating the spatial extend to
simulate occurrences.

initial_average_occurrences
A positive numeric value indicating the average number of occurrences to
be simulated within the extent of species_range at the first time point.
This value serves as the mean (lambda) of a Poisson distribution.

spatial_pattern
Specifies the spatial pattern of occurrences. It can be a character string
("random" or "clustered") or a numeric value 1 (1 means random distri-
bution, larger values indicate more clustering). The default is "random".
"clustered" corresponds to a value of 10. See create_spatial_pattern().

n_time_points A positive integer specifying the number of time points to simulate.

temporal_function
A function generating a trend in number of occurrences over time, or NA
(default). If n_time_points > 1 and a function is provided, it defines
the temporal pattern of number of occurrences.

Additional arguments to be passed to temporal_function.

simulate _occurrences 33

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Value

An sf object with POINT geometry containing the locations of the simulated occurrences,
a time_point column indicating the associated time point for each occurrence and a
sampling_p1l column indicating the sampling probability associated with the spatial pattern
(see create_spatial_pattern()).

See Also

Other main: add_coordinate_uncertainty(), filter_observations(), grid_designation(),
sample_observations()

Examples

Load packages
library(sf)
library(ggplot2)

Create polygon
plgn <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7, 9, 5, 2))))

1. Random spatial pattern with 4 time points
occ_sf <- simulate_occurrences(
species_range = plgn,
n_time_points = 4,
initial_average_occurrences = 100,
seed = 123)

geplot () +

geom_sf (data = occ_sf) +

geom_sf(data = plgn, fill = NA) +

facet_wrap("time_point") +

labs(
title = "Occurrences with random spatial and temporal pattern",
subtitle = "4 time steps") +

theme_minimal ()

2. Highly clustered spatial pattern with 6 time points
occ_sf_100 <- simulate_occurrences(

species_range = plgn,

spatial_pattern = 100,

n_time_points = 6,

initial_average_occurrences = 100,

seed = 123)

geplot () +
geom_sf (data = occ_sf_100) +

34 simulate random walk

geom_sf(data = plgn, fill = NA) +

facet_wrap("time_point") +

labs(
title = "Occurrences with structured spatial and temporal pattern",
subtitle = "6 time steps") +

theme_minimal ()

simulate_random_walk Simulate a random walk over time

Description

This function simulates a timeseries for the average number of occurrences of a species using
a random walk over time.

Usage

simulate_random_walk(
initial_average_occurrences = 50,
n_time_points = 10,
sd_step = 0.05,
seed = NA

Arguments

initial_average_occurrences
A positive numeric value indicating the average number of occurrences to
be simulated at the first time point.

n_time_points A positive integer specifying the number of time points to simulate.

sd_step A positive numeric value indicating the standard deviation of the random
steps.
seed A positive numeric value setting the seed for random number generation

to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Value

A vector of integers of length n_time_points with the average number of occurrences.

See Also

Other occurrence: create_spatial_pattern(), sample_occurrences_from_raster(), simulate_timeseries()

simulate _timeseries 35

Examples

simulate_random_walk(
initial_average_occurrences = 50,
n_time_points = 10,
sd_step = 1,
seed = 123

simulate_timeseries Simulate timeseries for species occurrences

Description

This function simulates a timeseries for the number of occurrences of a species.

Usage

simulate_timeseries(
initial_average_occurrences = 50,
n_time_points = 1,
temporal_function = NA,

L]

seed = NA

Arguments

initial_average_occurrences
A positive numeric value indicating the average number of occurrences
to be simulated at the first time point. This value serves as the mean
(lambda) of a Poisson distribution.

n_time_points A positive integer specifying the number of time points to simulate.

temporal_function
A function generating a trend in number of occurrences over time, or NA
(default). If n_time_points > 1 and a function is provided, it defines
the temporal pattern of number of occurrences.

Additional arguments to be passed to temporal_function.

seed A positive numeric value setting the seed for random number generation
to ensure reproducibility. If NA (default), then set.seed() is not called
at all. If not NA, then the random number generator state is reset (to the
state before calling this function) upon exiting this function.

Value

A vector of integers of length n_time_points with the number of occurrences.

36 simulate _timeseries

See Also

Other occurrence: create_spatial_pattern(), sample_occurrences_from_raster (), simulate_random_walk(

Examples

1. Use the function simulate_random_walk()
simulate_timeseries(
initial_average_occurrences = 50,
n_time_points = 10,
temporal_function = simulate_random_walk,
sd_step = 1,
seed = 123

2. Using your own custom function, e.g. this linear function

my_own_linear_function <- function(
initial_average_occurrences = initial_average_occurrences,
n_time_points = n_time_points,

coef) {
Calculate new average abundances over time
time <- seq_len(n_time_points) - 1

lambdas <- initial_average_occurrences + (coef * time)

Identify where the lambda values become O or lower
zero_or_lower_index <- which(lambdas <= 0)

If any lambda becomes O or lower, set all subsequent lambdas to O
if (length(zero_or_lower_index) > 0) {
zero_or_lower_indices <- zero_or_lower_index[1]:n_time_points
lambdas [zero_or_lower_indices] <- 0O

}

Return average abundances
return(lambdas)

Draw n_sim number of occurrences from Poisson distribution using
the custom function

n_sim <- 10

n_time_points <- 50

slope <- 1

list_abundances <- vector("list", length = n_sim)

Loop n_sim times over simulate_timeseries()
for (i in seq_len(n_sim)) {
abundances <- simulate_timeseries(
initial_average_occurrences = 50,
n_time_points = n_time_points,
temporal_function = my_own_linear_function,
coef = slope

simulate timeseries

list_abundances[[i]] <- data.frame(
time = seq_along(abundances),

abundance = abundances,
sim = i

Combine list of dataframes

data_abundances <- do.call(rbind.data.frame, list_abundances)

Plot the simulated abundances over time using ggplot2

library(ggplot2)

ggplot (data_abundances, aes(x
geom_line() +
labs(

= time, y = abundance, colour

x = "Time", y = "Species abundance",

title = paste(

n_sim, "simulated trends using custom linear function",

"with slope", slope
)
) +
scale_y_continuous(limits =
scale_x_continuous(breaks =
theme_minimal() +
theme (legend.position = "")

c(0, NA)) +
seq(0, n_time_points, 5)) +

factor(sim))) +

37

Index

x designation
sample_from_binormal_circle, 25
sample_from_uniform_circle, 26

detection
apply_manual_sampling_bias, 3
apply_polygon_sampling_bias, 5

* main

add_coordinate_uncertainty, 2
filter_observations, 8
grid_designation, 11
sample_observations, 27
simulate_occurrences, 32

* multispecies__low
map_simulation_functions, 23

multispecies
generate_taxonomy, 9
map_add_coordinate_uncertainty,

13
map_filter_observations, 15
map_grid_designation, 17
map_sample_observations, 20
map_simulate_occurrences, 22
* occurrence
create_spatial_pattern, 6
sample_occurrences_from_raster,
30
simulate_random_walk, 34
simulate_timeseries, 35

*

*

add_coordinate_uncertainty, 2, 9, 12,
29, 33

apply_manual_sampling_bias, 3, 5

apply_polygon_sampling_bias, 4, 5

create_spatial_pattern, 6, 31, 34, 36
filter_observationms, 3, 8, 12, 29, 33

generate_taxonomy, 9, 14, 16, 18, 21, 23
grid_designation, 3, 9, 11, 29, 3%

gstat::vgmn(), 7

map_add_coordinate_uncertainty, 10,
13, 16, 18, 21, 23

map_filter_observations, 10, 14, 15, 18
21, 23

map_grid_designation, 10, 14, 16, 17, 21,
23

map_sample_observations, 10, 14, 16, 18
20, 23

map_simulate_occurrences, 10, 14, 16
18, 21, 22

map_simulation_functions, 23

sample_from_binormal_circle, 25, 27
sample_from_uniform_circle, 26, 26
sample_observations, 3, 9, 12, 27, 33
sample_occurrences_from_raster, 7, 30,
34, 36
simulate_occurrences, 3, 9, 12, 29, 32
simulate_random_walk, 7, 31, 34, 36
simulate_timeseries, 7, 31, 34, 35

terra::rast(), 30

	add_coordinate_uncertainty
	apply_manual_sampling_bias
	apply_polygon_sampling_bias
	create_spatial_pattern
	filter_observations
	generate_taxonomy
	grid_designation
	map_add_coordinate_uncertainty
	map_filter_observations
	map_grid_designation
	map_sample_observations
	map_simulate_occurrences
	map_simulation_functions
	sample_from_binormal_circle
	sample_from_uniform_circle
	sample_observations
	sample_occurrences_from_raster
	simulate_occurrences
	simulate_random_walk
	simulate_timeseries
	Index

